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Abstract. A Markoff triple is a set of three positive integers satisfying the diophantine 

equation x2 + y2 + z2 = 3xyz. The maximum of the three numbers is called a Mar- 

koff number. We show: If there are Markoff triples (xl, y1, z) and (x2, Y2, z) with the 

same Markoff number z, then x= -x2 or x1 = Y2- 

A. A Markoff triple is a set of three positive integers satisfying the diophantine 
equation x2 + y2 + z2 = 3xyz. The maximum of the three numbers is called a 
Markoff number. Here we will prove: If there are Markoff triples (x1, y1, z) and 
(x2, Y2, z) with the Markoff number z, then x1 = x2 or x1 = Y2. Some numerical 
evidence concerning the uniqueness of the Markoff numbers is given in [1] and [4]. 

Definitions. 

{A, B} is the group generated by A and B. 
[A, B] = ABA-1B-' is the commutator of A, B E K (K a group). 
tr U is the trace of U E SL(2, C). 

B. LEMMA 1 (NIELSEN [3]). Let K = {A, B} be a free group of rank two. 
Two elements U, V of K generate K if and only if [U, V] is conjugate over K to 
[A, B]e, C = ?1. 

We need the following facts about elements of SL(2, C): For all A, B e SL(2, C) 
and n ? 1 

(a) tr AB = tr A * tr B - tr AB-1. 
(b) tr [A, B] = (tr A)2 + (tr B)2 + (tr AB)2 -tr A * tr B * tr AB - 2. 
(c) An = SnA-Sn-1I, where S&1 =-1, SO 0 1= 1, Sn+1 (tr A) 

Sn Sn-1 I 

Now we fix the following notation: 

T2 I ( 1 =) TR 2 TR) 

A. =RTR2T=( ), B.=TR2TRn= 1). 

It is known that 

(*) A-1 = TRBR-1 T-1 -R (AB)R 
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and tr[A, B] = - 2. Because of tr A = 3, we have tr A' = tr Bn = tr(AB)n > tr Am 

for n > m > 0. 
The modular group G is generated by T and R, and it is 

G = {T, RIT2 = R3 = 1} (G = PSL(2, Z)). 

The commutator group G = [G, G] of G is generated by A and B; and G' is a free 

group of rank two. By Lemma 1 we have (tr U)2 + (tr V)2 + (tr UV)2 = tr U * tr V 

tr UV for any pair (U, V) of generators of G' (see (b)). 
LEMMA 2. For n, m, r, s ? N the following facts are true: 
(1) tr ABn > tr ABm forn > m. 
(2) tr ABn > tr ABrABs for n > 4, n > r + s. 

(3) tr ABn < tr ABrABs for r + s > n. 
(4) tr ABnABm > tr ABrABs for n + m > r + s. 

Proof (1) tr ABn = tr A(SnB -Sn1I) = tr(SnAB -Sn_A) = 3(Sn -Sn1) 
> 3(Sm -Smi1) = trABm for n >m. 

(2) It is sufficient to prove this for n = r + s and s=1, i.e. n = r + 1, or s = 2. 

Let s = 1. Then, tr ABrAB = tr((SrAB - Sr_iA)AB) = tr(Sr(AB)2 - Sr-,A 2B) = 

7Sr - 6Sr_i < 3S - 3S_1 = tr ABn; because of n > 4. The proof for s = 2 is analo- 

gous. 
(3) This is trivial for r > n or s > n. Let us consider now r < n and s < n. It 

is sufficient to prove this for r + s = n + 1 and s = 1, i.e. n = r. tr ABnAB = 

7Sn -6Sn- 1 > 3(Sn -Sn_ 1) = tr ABn 
(4) This is trivial for n > r + s or m > r + s. Let us consider now n < r + s 

and m < r + s. It is sufficient to prove this for m + n = r + s + 1. Then m > r, 
m > s, n > r or n > s; say m > s. Now we may assume s = 1, i.e. m + n = r + 2. 

(a) n > r. Then it is sufficient to prove this for r = 1; i.e., m + n = 3. 
Then m = 2 because of m > s. tr ABAB2 = 15 > 7 = tr ABAB. 

(b) r > n. Then it is sufficient to prove this for n = 1, i.e. m = r + 1; and 

therefore, we may assume r = 1, too, i.e. m = 2. tr ABAB2 > tr ABAB. Q.E.D. 

Remark. Some of our main arguments in this proof were, for instance, the 

following: 
Let n, m, r, s ? N. 
(1) If tr ABnABm < tr ABrABs for n + m < r + s, then tr ABnABm + 1 < 

tr ABrABs+ 1. 
(2) If tr ABn < tr ABrAJIS, then tr ABn+ 1 < tr ABrABs+ 1 . 

(3) If tr ABn > tr ABrABs, n > 4, then tr ABn + 1 > tr ABrABs+ 1. 

With these and similar arguments, in connection with some suitable conjugations, 

we can construct the following lemma; 
LEMMA 3. Let C1 = AB"1 * * -ABEn, 2 < ei , and C2 = AB'1 * ABcm, 2 < 

oa. Letk1 =n + 12 U =n +s1,k2 =m +71=1 = m + S2.et Lse1 s2 for 
n < m, respectively, s1 > s2 for m < n. Then tr C1 > tr C2. 

Proof We prove this lemma inductively over the possible quadruples (sj, s2' 

n, m), where the quadruples (sj, s2' n, m) are ordered by: 
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(s s n'm')<(s s2 n,m)?s?s1. ss2S. n <n, m 'm 

and 

sI + st + n' + m' <s + S + n + m. 
1 2 1 2 

For suitable small quadruples (sl, S2, n, m) the statement is true by Lemma 2. 

Let (sl, s2, n, m) be a possible quadruple. We assume the statement is true for 

all possible quadruples (s', s', n', I') with (s', s2, n', i') < (s1, s2' n, i). 
Case 1. ei = 2 for i = 1,. .., n. Then C1 = (AB2)n, n > 2 and n > m, i.e. 

S1 > s2 and k1 > k2. If m > 2, then it follows by assumption that tr ABS2 > tr C2. 
Therefore, the statement is true, if we can show tr C1 > tr ABs2. 

Obviously, the statement is true for s1 > s2, if we can show it for 2n = s =S2 
+ 1. And we get 

tr(AB2)n = tr(AB2) * Sn(tr AB2) - 2Sn- 1(tr AB2) 

= 6Sn(6) - 2Sn-l(6) > 3(S2n-1(3) -S2n-2(3)) 

= 3(S2n_l(tr B) - S2n-2(tr B)) = tr AB2n-l by induction. 

Case 2. oa = 2 for j = 1, . . ., m. Then C2=(AB2)m. 
Obviously, the statement is true for m < n. 
Let us consider now n < m. Then ei > 3 for some i. Obviously, the statement 

is true for si > s2, if we can show it for s =S2 = 2m. 

Let us consider now si = S2' For n = m - 1 the statement is true by direct 

calculations. Let us consider now n < m - 1. It is tr(AB2)m-2AB4 > tr(AB2)m; 
and therefore, it follows by assumption that 

tr C1 > tr(AB2)m-2AB4 > tr C2. 

Case 3. ei > 3 for some i and oV > 3 for some j. We may assume, perhaps after 

suitable conjugations, en > 3 and a?m > 3. Let 

C' = AB1 e ... ABen-1 C' = AB'' ... AB fml 

12 
Then tr C' > tr Ce implies by a simple calculation 

tr C1 tr CB > tr CB = tr C2. Q.E.D. 

C. THEOREM. Let (x1, Y1, z) and (x2, Y2. z) be Markoff triples with the same 
Markoff number z. Then xi = x2 or x1 = Y2 (and therefore, y1 = Y2 or y1 = x2). 

Proof. If a triple (x, y, z) of three positive integers is a solution of the diophan- 
tine equation x2 + y2 + z2 = xyz, then x, y, z 0 (mod 3), i.e.: With the integral 
solutions of x2 + y2 + z2 - xyz we have also the integral solutions of x'2 + y'2 + 

z2 = 3x y z and conversely. Therefore, the theorem is proved if we can show: If 
(x1, Y1, z) with x1, Y1 < z and (x2, Y2, z) with x2, Y2 < z are triples of positive 
integers satisfying the diophantine equation x2 + y2 + z2 = xyz, then x1 = x2 or 
x1 =Y2* 

Let (xi, Y1, z) with xi, Y1 < z and (x2, Y2, z) with x2, Y2 < z be triples of 
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positive integers satisfying the diophantine equation x2 + y2 + z2 = xyz. The theorem 
is certainly true for x1 = z, x2 = z, y1 = z or Y2 Z 

Let us consider now x1, y1, x2, Y2 < z. Especially, z > 3. By [2] and [5] 
there are generators. (A1, B1) and (A2, B2) of the commutator group G' of the modu- 
lar group G with 

(1) trA1 =z, trB1 = xl, trA1Bl =y1, and 
(2) trA2 z, trB2 =x2, trA2B2 =Y2. 

Moreover, tr [A 1, B1 ] = tr [A2, B2] = - 2. By [2, Theorem 2.1 ,we may 
assume that A1 is conjugate over G' to an element Mr.,si = ll rI1ABaii+2 or its inverse, 

where (ri, si) an integer pair with ri > 0, si> 0, (ri, s) = 1 and ai. = Usi/ri] - 

[Q - I)silri] (i = 1, 2). By Lemma 3 we have r, = r2, sl = s2 and a,, = a21 (here 
tr A 1 = tr A2); that means we may assume that A 1 is conjugate over G' to A2 or its 
inverse. Now with regard to Lemma 1 and (*) we may assume, perhaps after a suitable 
conjugation, 

(a) A2= A, a = +1, and 
(b) [A1,B1] = [At, B' ] or [A1,B1] =B[B6 Al]; , = ?1. 
Case 1. Let [A 1, B1= [B65, Af. Then we have necessarily 'y = - 1, because 

otherwise 

B6'A B-6=A B A-'B-'A and z=trA =z tr[A ,BI -z=-3z. 2 12 11 1 1 1 11 

We get A1 = B-AylB6A IB56A B,; i.e. By1'AylB' and A1 commute. Therefore, 

B-1A7lB5 and A1 have the same fixed points. Since the commutator subgroup G' of 

the modular group is free, we have B5= A B1AO. Assume > 1. Then 

X2 = tr B AO+' = YIS,+ -x S = (Yi Z - xd)S, Yiso_1 > z' 

and that is not true. Therefore, f S 0. Assume ,B < - 2. Then x2 = tr B1A + 1- 

x tr Aj-3 - tr B A"-- = (xIz -y)Sy > z, and that is not true. Therefore, 
3=O or3= -1. We havex2 =Y2 for =O andx2 =x1 forf3=-1. 

Case 2. Let [A1, B1] = [AI,B5]. Then we have necessarily y = 1, because 
otherwise again z = -3z. We getA1 =A B 1B- A 1BA 6B1, i.e., By 1B5 and A 1 commute. 
Therefore By1B6 and A1 have the same fixed points. Since G' is free, we have B6 = 

B1AO. Assume 3 > 2. Then 
1 1 ~ ~ 1 

x2=tr B AO = ylSg - x1 S_ = (Ylz - xd)SO_l Y1 3: -2 > zy 

and that is not true. Therefore, f < 1. Assume f < - 1. Then x2 = tr B1A4 = 

x tr A -- tr B1A j = (x 1z - y1 &S_0 > z, and that is not true. Therefore, ,B = 0 or 
,B= 1. We have x2 = x1 for ,B= 0 and x2 = y1 for ,B= 1. This completes the 
proof. Q.E.D. 
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